Math 214 - Quiz 1

American University of Beirut - Fall 2018 - Dr. Richard Aoun

Note: The set \mathbb{R} of real numbers is always implicitly endowed with its Euclidean topology, unless specified otherwise.

Exercise 1. Endow \mathbb{R}^2 with the product topology and its subsets with the subspace topology. Let A be the open interval lying on the x-axis and joining the point (-1,0) and (1,0). True or False? Justify.

- 1. A is open in \mathbb{R}^2 . No
 - 2. A is open in the x-axis of \mathbb{R}^2 . Yes $A = S^2 \cap A$
 - 3. A is closed in the open unit disk of \mathbb{R}^2 .

Exercise 2. Let X be a topological space, A a subset of X and U an open subset of X.

- 1. Show that the closure of $A \cap U$ in U (with its subspace topology) is equal to $\overline{A} \cap \overline{U}$, where \overline{A} is the closure of A in X. Deduce that if A is dense in X, then $A \cap U$ is dense in U.
- 2. Do the results of the previous question remain true if U fails to be open in X?

Exercise 3. Recall that if X is a topological space and $x \in X$, then

- ullet a neighborhood of x is any subset of X containing an open subset containing x
- a closed neighborhood F of X is any neighborhood of x which is itself closed in X, i.e. F is closed in X and F contains an open neighborhood of x.

For example, for $X = \mathbb{R}$ and x = 0, then neither $\{0\}$ nor \mathbb{Z} are closed neighborhood of 0 (although they are both closed in \mathbb{R}) while $[-1,1] \cup \{2\}$ is a closed neighborhood of 0 (because it is itself closed in \mathbb{R} and it contains U = (-1,1) which is an open neighborhood of 0).

- 1. Let X be a topological. Show that the following statements are equivalent:
 - (a) X is Hausdorff
 - (b) For every $x \in X$, the intersection of all closed neighborhoods of x in X is $\{x\}$.
- 2. Give an example of a T_1 -space for which statement (b) above fails. Justify quickly your claims.

Exercise 4. Let X be a topological space, I a set and $(A_{\alpha})_{\alpha \in I}$ a collection of subsets of X.

- 1. (a) Check that $\bigcup_{\alpha \in I} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha \in I} A_{\alpha}}$.
 - (b) Show that the other inclusion holds if I is a finite set. Indicate where you are using the finiteness assumption on I in your proof.
 - (c) Show, using a counter-example, that the other inclusion of part (a) may however fail if I is an infinite set.
 - (d) Criticize the following wrong "proof" that $\overline{\bigcup_{\alpha\in I} A_{\alpha}} \subseteq \bigcup_{\alpha\in I} \overline{A_{\alpha}}$: "Let $x\in \overline{\bigcup_{\alpha\in I} A_{\alpha}}$. Then every neighborhood U of x intersects $\bigcup_{\alpha\in I} A_{\alpha}$. Thus U must intersect some A_{α} , so that x must belong to the closure of some A_{α} . Therefore $x\in \bigcup_{\alpha\in I} \overline{A_{\alpha}}$ ".

2. Definition (Locally finite collection):

Let X be a topological space. A collection $A = (A_{\alpha})_{\alpha \in I}$ of subsets of X is said to be locally finite in X if every point in X has an open neighborhood that intersects only finitely many elements of A (i.e. for every $x \in X$, there exists U open in X containing x and there exists $r \in \mathbb{N}, \, \alpha_1, \cdots, \alpha_r \in I \text{ such that } A_{\alpha_i} = \emptyset \text{ for all } i \in I \setminus \{\alpha_1, \cdots, \alpha_r\}$.

- (a) Examples:
 - i. Check that $\mathcal{A}:=\{[n,n+1];n\in\mathbb{Z}\}$ is locally finite in $\mathbb{R}.$
 - ii. Is $\mathcal{A}:=\{[-n,n];n\in\mathbb{N}\}$ locally finite in \mathbb{R} ?
 - iii. Check that $\mathcal{A}:=\{(0,1/n);n\in\mathbb{N}^*\}$ is locally finite in (0,1) (endowed with the
- (b) i. Show that if A is locally finite in X then the collection $\overline{A}' = {\overline{A}; A \in A}$ of the closures in X of the closures in X of elements of \mathcal{A} is also locally finite.
 - ii. In this question $X=\mathbb{R}$ endowed with the cofinite topology \mathcal{T}_f . Let $\mathcal{A}=\mathcal{T}_f$, i.e. \mathcal{A} is the collection of all open subsets in $(\mathbb{R}, \mathcal{T}_f)$. Show, using $(\mathbb{R}, \mathcal{T}_f)$ and \mathcal{A} , that the converse of the result of the previous question is not true in general.
- (c) Let $\mathcal{A} = (A_{\alpha})_{\alpha \in I}$ be a locally finite collection of subsets of X. Show that

$$\bigcup_{\alpha \in I} \overline{A_{\alpha}} = \overline{\bigcup_{\alpha \in I} A_{\alpha}}.$$

Deduce that the union of closed subsets of X that form a locally finite collection remains closed in X.

Exercise 5. Let X be the set of all functions from [0,1] to \mathbb{R} . For every $f \in X$, for every non zero integer N, for every choice of N points x_1, \dots, x_N in [0,1] and for positive real number $\epsilon > 0$, we define the following subset of X:

$$B_{f,x_1,\cdots,x_N,\epsilon} := \{g \in X; \forall i = 1,\cdots,N, |f(x_i) - g(x_i)| < \epsilon\}.$$

For example if $f \in X$, x = 0 and $\epsilon = 0.1$, then $B_{f,x,\epsilon}$ is nothing than the set of all functions $g: [0,1] \longrightarrow \mathbb{R} \text{ such that } |g(0) - f(0)| < 0.1.$

Let $\mathcal{B} \subseteq \mathcal{P}(X)$ be the collection of subsets of X that consists of all the $B_{f,x_1,\cdots,x_N,\epsilon}$ with f varying in X, N varying in \mathbb{N}^* , x_1, \dots, x_N varying in [0,1] and ϵ varying in $(0,+\infty)$.

- 1. Show that $\mathcal B$ is a basis for some topology $\mathcal T$ on X. Advice: Begin by understanding what does it mean for two elements $B_1, B_2 \in \mathcal{B}$ to have an empty intersection.
- 2. Is $A := \{ f \in X; \forall x \in [0,1], f(x) < 1 \}$ open in (X, \mathcal{T}) ?
- 3. Show that (X, \mathcal{T}) is Hausdorff.
- 4. Let $D \subseteq X$ be the set all functions $g: [0,1] \longrightarrow \mathbb{R}$ such that $\{x \in [0,1]; g(x) \neq 0\}$ is finite. Show that D is dense in (X, \mathcal{T}) .
- 5. Show that a sequence $(f_n)_{n\in\mathbb{N}}$ in X converges to some f in (X,\mathcal{T}) , if and only if, for every $x \in [0,1]$ the numerical sequence $(f_n(x))_{n \in \mathbb{N}}$ converges to f(x) in \mathbb{R} .
- 6. Let f be any function $[0,1] \longrightarrow \mathbb{R}$ such that f is non zero on an uncountable subset of [0,1](like for instance the function $f(x) = \exp(x), x \in [0, 1]$). Show that there is no sequence in D converging to f in (X, \mathcal{T}) . Is (X, \mathcal{T}) first-countable?

Exercise 6. (Bonus) Let (X, \mathcal{T}) be a second countable topological space.

- 1. Show that \mathcal{T} has at most the cardinality of the continuum, i.e. that there exists an injection from \mathcal{T} into \mathbb{R} .

 Hint: It is enough to find an injection from \mathcal{T} to the set $\{0,1\}^{\mathbb{N}}$ of all functions from \mathbb{N} to $\{0,1\}$. Indeed, $\{0,1\}^{\mathbb{N}}$ is in bijection with \mathbb{R} (no need to prove this fact).
- 2. Assume that X is moreover a T_1 -space. Use the result of the previous question, to show that X itself has at most the cardinality of the continuum.